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Abstract
We review our incoherent quasielastic neutron scattering (QENS) studies of
the dynamics of supercooled water confined in nanoporous silica materials.
QENS data were analysed by using the relaxing cage model (RCM) previously
developed by us. We first use molecular dynamics (MD) simulation of the
extended simple point charge model (SPC/E) for bulk supercooled water to
establish the validity of the RCM, which applies to both the translational and
rotational motion of water molecules. We then assume that the dynamics
of water molecules in the vicinity of a hydrophilic surface is similar to a
bulk water at an equivalent lower supercooled temperature. This analogy
was experimentally demonstrated in previous investigations of water in
Vycor glasses and near hydrophilic protein surfaces. Studies were made of
supercooled water in MCM-41-S (pore sizes 25, 18, and 14 Å) and MCM-
48-S (pore size 22 Å) using three QENS spectrometers of respective energy
resolutions 1, 30, and 60 µeV, covering the temperature range from 325 to
200 K. Five quantities are extracted from the analysis: they are β, the stretch
exponent characterizing the α-relaxation; βγ , the exponent determining the
power-law dependence of the relaxation time on Q; 〈τ0〉, the Q-independent
pre-factor for the average translational relaxation time; 〈τR1〉, the relaxation time
for the first-order rotational correlation function; and 〈τR2 〉, the relaxation time
for the second-order rotational correlation function. We discuss the temperature
dependence of these parameters and note that, in particular, the dynamics is
rapidly slowing down at temperature around 220 K, signalling the onset of a
structural arrest transition of liquid water into an amorphous solid water.
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1. Introduction

The dynamical properties of bulk supercooled water have attracted a great deal of interest during
the last decades; however, the details of the microscopic motions of water molecules in the deep
supercooled region are still far from being understood. A large number of recent works focus on
this topic [1–3]. It has been suggested that properties of supercooled water show power-law-like
anomalies going toward a limiting temperature, Ts ∼ 227 K [4]. Nevertheless, an experimental
detection of such a behaviour is not easy in practice since bulk water at ambient pressure can be
supercooled only down to the homogenous nucleation temperature, TH ∼ 235 K. However, one
may bypass this homogeneous nucleation temperature barrier if water is confined in nanoporous
matrices. On the other hand, water in many real systems is not in its bulk form but located
in the vicinity of surfaces or filling small cavities, such as water in rocks, in polymer gels, in
biological membranes, and in dense colloidal solutions [5]. Moreover, the dynamics of water
is affected by the microstructure of the nanoporous materials, which is relevant in processes
involving catalysis and separation. Therefore, the study of water in confined geometry is
of fundamental importance for clarifying the basic properties of water and it is likely to be
the key to understand many real systems. Experimentally, the structural properties of water
in confinement [6] and at supercooled temperatures [7] were studied extensively using x-ray
and neutron diffraction. On the other hand, the relaxational dynamics of water confined in
mesoporous matrices were studied using dielectric spectroscopy [8–14] and different nuclear
magnetic resonance (NMR) techniques [15–20].

Due to the fact that the incoherent scattering cross section of hydrogen is much larger
than the sum of that of oxygen, silicon, and carbon, which mainly constitute the confining
materials, incoherent quasielastic neutron scattering (QENS) is a well established and powerful
method for studying the self-dynamics of the hydrogen atoms in a water molecule in bulk
or in confinement. Moreover, by combining the results from time-of-flight (TOF) and
backscattering spectrometers, it is possible to study the dynamics of water in a wide range
of timescale, encompassing the picosecond and nanosecond range. At the same time, by
investigating Q values (Q being the magnitude of the wavevector transfer) in the range
0.2 Å−1 � Q � 2.00 Å−1, the spatial characteristics of water dynamics can be investigated
at a sub-nanometre scale. Moreover, the experimentally determined self-dynamic structure
factor is related to the intermediate scattering function (ISF) by a Fourier transform.
This special feature allows the interpretation of the results obtained by the experiments
in terms of a direct comparison with theory and MD data on the intermediate scattering
functions.

Therefore, the QENS technique has been employed for the study of water dynamics in
nanoporous matrices. We carried out molecular dynamics (MD) simulations and used different
energy resolutions of the QENS spectrometers to study the dynamics of water in confined
geometries covering a wide range of timescale. MD simulations of the extended simple point
charge (SPC/E) model of water have furnished detailed and accurate results for understanding
the dynamics of supercooled water [21–25]. From the analysis of these results, the relaxing
cage models (RCMs) for the translational and rotational dynamics of water at supercooled
temperatures have been developed. Moreover, MD simulations of SPC/E water confined in
silica nanopores have been carried out as well in the literature [26, 27]. The interaction between
the hydrophilic surface and the water molecules has noticeable effects on the structure of the
first and second layers of water near the pore surface [28]. As far as the dynamics is concerned,
in confinement water molecules are in the glassy state with very low mobility and already have
a non-exponential relaxation behaviour at ambient conditions. In general, the water molecules
show a dynamics similar to that of supercooled water [26, 27].
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Different nanoporous matrices, e.g. Vycor [29–32], GelSil [33, 34], clay [35, 36], and
MCM-41 [37–40], have been used as confining media. Among the different nanoporous silica
matrices, the relatively recently discovered MCM represents an interesting opportunity for
studying water in confinement. For example, in comparison with Vycor glass, these molecular
sieves have smaller pores with a narrower size distribution.

In this paper we will explain in detail the RCM theory and the MD results of dynamics
of supercooled bulk water, and report the results of our QENS study on water confined in
laboratory synthesized MCM-41-S and MCM-48-S. These MCM samples allow us to study
dynamical effects of different pore morphologies; in fact, the MCM-41-S matrix has 1D
cylindrical tubes arranged in a hexagonal structure whereas MCM-48-S has 3D bicontinuous
morphology. It is very important to note that the small dimension of these pores allows us to
investigate temperatures below the homogeneous nucleation temperature.

In general, the present study is a systematic investigation of the temperature behaviour
of both the translational and rotational dynamics of water inside nanoporous materials, from
room temperature down to the limiting temperature Ts of supercooled water. The data, collected
on three different spectrometers, have been analysed according to a single consistent model
(RCM), which we have developed in the past years. The obtained results show the exponential
slowing down of both the translational and rotational dynamics.

2. SPC/E simulation

We performed MD simulations of 216 water molecules at temperatures T = 284.5, 263.0,
250.0, 225.0, 220.0 and 215.0 K, interacting via the SPC/E pair potential [41]. This is a
more suitable method to test out our model of the decoupling approximation and rotational
correlation functions than using real neutron scattering data, since MD data do not have the
complication of the resolution effect as do real experimental data. We carried out an extensive
simulation, in an NV E ensemble with 216 water molecules contained in a cubic box of edge
18.65 Å. The effective potential used is the extended simple point charge model, SPC/E. This
potential treats a single water molecule as a rigid set of point masses with an OH distance of
0.1 nm and an HOH angle equal to the tetrahedral angle 109.47◦. The point charges are placed
on the atoms and their magnitudes are qH = 0.4238e and qO = −2qH = −0.8476e. Only the
oxygen atoms in different molecules interact among themselves via a Lennard-Jones potential,
with the parameters σ = 0.316 56 nm and ε = 0.648 57 kJ mol−1. The interaction between
pairs of molecules is calculated explicitly when their separation is less than a cut-off distance
rc of 2.5σ . The contribution due to Coulomb interactions beyond rc is calculated using the
reaction-field method, as described by Steinhauser [42]. Also, the contribution of Lennard-
Jones interactions between pairs separated by more than rc is included in the evaluation of
thermodynamic properties by assuming a uniform density beyond rc. A heat bath [43] has
been used to allow for heat exchange when changing the temperature of the system. After
the system has been equilibrated, the heat bath is then removed. In our simulations, periodic
boundary conditions are used. The time step for the integration of the molecular trajectories
is 1 fs. Simulations at low T were started from equilibrated configurations at higher T .
Equilibration was monitored via the time dependence of the potential energy. In all cases
the equilibration time teq was longer than the time needed to enter the diffusive regime. We
note that, for the SPC/E model of water, the density maximum occurs at about 250 K, which
corresponds to 277 K in real water. For the lower temperatures, 225–210 K, we recorded water
trajectories for more than 1 ns. For the other temperatures we recorded for 0.1 ns. Further
detailed thermodynamic parameters of the simulations are given in [22, 41].
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Table 1. Simulated state points.

T (K) ρs (g cm−3) E (kJ mol−1) P (MPa) D (10−5 cm2 s−1)

284.5 0.984 −48.1 −73 ± 11 (1.3 ± 0.1)× 100

263.0 0.985 −49.4 −70 ± 12 (7.5 ± 0.6)× 100

250.0 0.986 −50.0 −76 ± 12 (5.2 ± 0.5) × 10−1

225.0 0.984 −52.6 −75 ± 15 (4.4 ± 0.4) × 10−2

220.0 0.984 −53.1 −72 ± 16 (6.2 ± 0.3) × 10−3

215.0 0.984 −53.7 −75 ± 18 (1.2 ± 0.1) × 10−3

In the investigated Q range, the vibrational contribution drops out of consideration
(explained later). Because of the above mentioned simplification, in a molecular dynamics
simulation the QENS spectra can be obtained taking water to be effectively a rigid molecule
using, for example, the SPC/E model potential.

The SPC/E potential has been explicitly parametrized to reproduce the experimental value
of the self-diffusion constant at ambient temperature and at a density of 1 g cm−3 [43]. Densities
in our simulation have been chosen on the basis of trial and error in preliminary runs. The
corresponding pressures for the chosen final densities are reported in table 1, and this has been
well described in [22].

3. Relaxing cage model and mode-coupling theory

We use ideas from mode-coupling theory (MCT) of supercooled liquids to formulate the
relaxing cage model (RCM) [23]. The cage effect in the liquid state, which can be pictured as
a transient trapping of molecules as a result of lowering temperature or increasing density, is a
main idea in MCT [44, 45]. Microscopic density fluctuations of disordered high temperature
and low density fluids usually relax rapidly in a timescale of a few picoseconds. Then, upon
lowering the temperature below the freezing point or increasing the density of the liquid by
applying a pressure, a rapid increase in the local order surrounding a particle, called a cage,
leads to a substantial increase of the local structural relaxation time. A trapped particle in
a cage, in the dense or supercooled liquid regime, can only migrate through rearrangement
of a large number of particles surrounding it. Therefore, there is a strong coupling between
the single-particle motion and the density fluctuations of the fluid. According to MCT, the
long time cage structural relaxation behaviour is completely determined by the equilibrium
structure factor S(Q) of the liquid. It predicts that at the singular temperature, Ts, the structural
relaxation time becomes infinity and the supercooled liquid shows a phenomenon of structural
arrest. On approaching Ts from above, there is a larger and larger separation between the
timescales describing the rattling motion of a particle in the cage and the eventual structural
relaxation time of the cage. Numerically, various model systems, such as the hard sphere
system [46] or a mixed Lennard-Jones system [47], have shown this prediction and that the
time evolution of the structural relaxation (called the α relaxation) is well approximated by a
stretched exponential decay with a system dependent stretch exponent.

Upon supercooling, water undergoes an expansion or lowering of density. On lowering
the temperature below the freezing point, water develops a tendency to form a hydrogen-
bonded, tetrahedrally coordinated first- and second-neighbour shells around a given molecule.
Compared with five- or six-neighbour configurations which are known to be present with
higher probability at higher temperatures, this configuration is a more open structure, so
that the structural relaxation time of water increases rapidly upon supercooling since the
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Figure 1. A schematic diagram for the
hydrogen-bonded, tetrahedrally coordinated
nearest neighbour cage in supercooled water.

tetrahedrally coordinated hydrogen-bonded structure, shown in figure 1, is an inherently more
stable structure locally and has a longer lifetime. At short times, less than 0.1 ps, the water
molecule performs harmonic vibrations and librations inside the cage; at long times, longer
than 1.0 ps, the cage eventually relaxes and the trapped particle can migrate through the
rearrangement of a large number of particles surrounding it. Thus, the centre of mass motion
of a supercooled water molecule can be considered as a compounded motion of a short time
in-cage vibration and a long time cage relaxation, having two widely separated timescales.
This is the so-called relaxing cage model. To analyse the translational and rotational dynamics
of water at supercooled temperature, we have developed the RCM in the past few years. This
model has been tested with MD simulations of SPC/E water [23, 24], and has been used to
analyse QENS data [48–50].

3.1. Dynamic structure factor

Since the incoherent scattering cross section of hydrogen is roughly 20 times larger than the total
scattering cross section of oxygen, silicon, and aluminium in the porous matrices, we may only
take into account the contribution from the hydrogen atoms in the double differential scattering
cross section of water and deal with the self-dynamic structure factor of the hydrogen atoms
in the water molecules. In a quasielastic neutron scattering experiment, we can measure the
double differential scattering cross section d2σH/d� dω, where σH is the incoherent scattering
cross section of a hydrogen atom, d� is the differential solid angle into which the neutron is
scattered and E = h̄ω is the energy transferred by the neutron to the sample. We have a well
known relation

d2σH

d� dω
= 2N

σH

4π

kf

ki
SH(Q, ω) (1)

where N is the number of water molecules in the sample, ki and kf are, respectively, the
wavenumbers of the incident and scattered neutrons,and SH(Q, ω) is the self-dynamic structure
factor. Since N , σH, ki, and kf are all known quantities in a quasielastic scattering experiment,
SH(Q, ω) can be straightforwardly extracted from the double differential scattering cross
section.

In van Hove theory of neutron scattering [51], SH(Q, ω) is given in terms of the Fourier
transform of the intermediate scattering function (ISF) of the hydrogen atom, FH(Q, t),
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according to the equation

SH(Q, ω) = 1

2π

∫ ∞

−∞
dt eiωt FH(Q, t). (2)

We can then see that FH(Q, t) is the primary quantity of theoretical interest related to
experiments. It can be calculated by a model,such as RCM, and molecular dynamics simulation
of SPC/E model of water.

3.2. Decoupling approximation

The dynamics of a hydrogen atom is composed of three components: the vibrational motion of
the atom around its equilibrium position, the rotational motion of the atom around the centre of
mass, and the translational motion of the centre of mass. The decoupling approximation [52]
has been generally assumed in the analysis of QENS data of water. In this approximation, the
ISF of the hydrogen atoms is written as the product of the vibrational ISF, FV(Q, t), rotational
ISF, FR(Q, t), and translational ISF, FT(Q, t):

FH(Q, t) = FT(Q, t) · FR(Q, t) · FV(Q, t). (3)

The vibrational contribution, or the inelastic contribution, can be well approximated by
a Debye–Waller factor [53], exp[− 1

3 〈u2〉Q2]. This is because we are concerned only with
analysis of neutron spectra in the quasi-elastic region (0< E < 3000µeV), which is equivalent
to a timescale of picoseconds or longer in the ISF. 〈u2〉 is the mean square vibrational amplitude
of the hydrogen atom around its equilibrium position. Since O–H distance in a water molecule
is about 1 Å,

√〈u2〉 � 0.1 Å. In the investigated Q range (Q < 2 Å), the vibrational
Debye–Waller factor is essentially unity. This also implies the validity of the SPC/E model
in simulating ISF by assuming a rigid water molecule. As the consequence, the ISF of the
hydrogen atoms can be expressed as the product of the rotational and translational ISFs,

FH(Q, t) = FT(Q, t) · FR(Q, t). (4)

3.3. The validity of the decoupling approximation

We start to discuss the validity of the decoupling approximation, equation (4), by defining
a new function, FCON(Q, t). From the definition of intermediate scattering function,
FH(Q, t) = 〈e−i �Q·(�r(t)−�r(0))〉, where �r(t) is the position of the hydrogen atom at time t . Since
�r(t) = �R(t) + �b(t), where �b(t) denotes a vector from the centre of mass to the hydrogen
atom and �R(t) denotes the position of the centre of mass, we can rewrite FH(Q, t) as the
product of four factors,

FH(Q, t) = 〈
e−i �Q· �R(0)e−i �Q·�b(0)ei �Q· �R(t)ei �Q·�b(t)〉. (5)

When dealing with a correlation function that is a product of four terms, each one with a
(Q, t) dependence, it is generally possible to rewrite it as the sum of all the possible binary
factorizations of its terms plus another irreducible term, which we now call the connected
intermediate scattering function FCON(Q, t),

FH(Q, t) = 〈
e−i �Q· �R(0)ei �Q· �R(t)〉 × 〈

e−i �Q·�b(0)ei �Q·�b(t)〉
+

〈
e−i �Q· �R(0)ei �Q·�b(t)〉 × 〈

ei �Q· �R(t)e−i �Q·�b(0)〉 + FCON(Q, t). (6)

The time dependence of �b(t) is independent of the choice of the reference system. In
the reference system defined by the molecular centre of mass �R(t), all mixed correlation
functions vanish. Therefore, the contributions arising from all the terms composed of products
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Figure 2. The intermediate scattering functions (ISFs) at three Q values (0.75, 1.51, and 2.26 Å−1)
and at T = 225 K, as a function of time in a logarithmic scale. The open circles represent FH(Q, t),
the top solid curves, FCM(Q, t)×FR(Q, t), the dash–dot curve, the connected part of the correlation
function, FCON(Q, t), and the thick solid curve, the difference, FCM(Q, t) − FH(Q, t). It is to
be noted that at low Q the decoupling approximation is good, but at high Q the approximation
progressively becomes poorer at long time but the deviation never exceeds 0.09. However, it is
also noticeable that at long time (t > 1 ps) FH nearly coincides with FCM.

of �R and �b variables at an arbitrary time are zero on average. Generally speaking, FCON(Q, t)
is different from zero and contains the contribution coming from the four factors coupled
together in the correlation function. Therefore, we can get the following relation:

FH(Q, t) = FT(Q, t)FR(Q, t) + FCON(Q, t) (7)

where FCON(Q, t) describes the strength of the coupling between translational and rotational
motions as a function of Q and t , as observed by QENS. Even though the rotational and
translational motions of a water molecule are strongly coupled at all times [24, 25], MD
simulations of SPC/E water at supercooled temperature have shown that the decoupling
approximation is good to a few per cent.

In the graphs of figure 2 we show in a semi-logarithmic scale the following four quantities:
FH(Q, t), FCM(Q, t) × FR(Q, t), FCON(Q, t), and FCM(Q, t) − FH(Q, t). These functions
are shown for a temperature 225 K at three Q values. These Q values are also quite close to
the maximum and the minimum Q value that can be probed by a typical QENS experiment.
We see that FH(Q, t) has the same short time features as FCM(Q, t) × FR(Q, t) but the same
long time feature as FCM(Q, t), so that FCON(Q, t) is very small at time smaller than 1 ps but
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Figure 3. The dynamic structure factor at three Q values (0.75, 1.51, and 2.26 Å−1) and at
T = 225 K, as a function of frequency in a logarithmic scale. Also note the Fourier transform of the
fit to the intermediate scattering functions of the centre of mass and the hydrogen atoms and the direct
Fourier transform of the connected correlation contribution. The solid curves represent SH(Q, ω),
the dashed curves, SCM(Q, ω), and the dash–dot curve, the connected part of the structure factor,
SCON(Q, ω). It is to be noted that only at low frequency, SCM(Q, ω) is different from SH(Q, ω)
by showing a higher peak. This difference increases as Q gets bigger, but never exceeds 0.09.

becomes non-negligible for long time. In contrast FCM(Q, t)− FH(Q, t) is negligible at time
longer than 1 ps but large at short time. Both FCON(Q, t) and FCM(Q, t)− FH(Q, t) increase
substantially with increasing Q value, but never reach 0.09 in magnitude.

In the graphs of figure 3, we show that the coupling of rotational and translational motions
is in general non-negligible for high Q values. In the frequency space, the difference between
the centre of mass and the hydrogen is not as big as the contribution from FCON(Q, t).

3.4. Theory for the translational intermediate scattering function

Having established the validity of the decoupling approximation, equation (4), we now discuss
how to get the translational and the rotational intermediate scattering functions separately. For
the translational ISF, the relaxing cage picture gives us an idea to express FT(Q, t) in terms of
the product of the short time dynamics and a long time decay of the ISF. This is because the
timescale for the in-cage vibrational motion and the long time relaxation of the cage itself are
well separated in the supercooled water. We first discuss the short time part of the ISF.

The RCM assumes that the translational short time dynamics of the trapped water molecule
can be treated approximately as the motion of the centre of mass in an isotropic harmonic
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potential well, provided by the mean field of its neighbours. Then, by using the so-called
Bloch identity, which is valid for a system with a simple harmonic oscillator Hamiltonian, we
connect the short time part of the translational ISF to the centre of mass velocity auto-correlation
function, 〈�vCM(t) · �vCM(0)〉:

F s
T(Q, t) = exp

{
−Q2

[∫ t

0
(t − τ )

〈�vCM(0)�vCM(τ )
〉
dτ

]}
. (8)

The density of states, Z(ω), is another key parameter and it has translational and rotational
parts. The translational part of the density of states, ZT(ω), which can be measured by inelastic
neutron scattering experiments, is the Fourier transform of the centre of mass velocity auto-
correlation function:

ZT(ω) = 1

2π

∫ ∞

−∞
eiωt

〈�vCM(0) · �vCM(τ )
〉/〈
v2

CM

〉
dt (9)

where M is the mass of the particle, and 〈v2
CM〉 = 〈v2

x 〉 + 〈v2
y〉 + 〈v2

z 〉 = 3v2
0 = 3kBT/M is the

average centre of mass square velocity.
Both MD and experiment results show that the translational harmonic motion of a water

molecule in the cage gives rise to two characteristic peaks in ZT(ω) (or ZCM(ω)) at about 10
and 30 meV, respectively [30]. Therefore, the following Gaussian functional form has been
suggested for the translational part of the density of states:

ZT(ω) = 2(1 − C)
ω2

ω2
1

√
2πω2

1

exp

[
− ω2

2ω2
1

]
+ 2C

ω2

ω2
2

√
2πω2

2

exp

[
− ω2

2ω2
2

]
(10)

where
√

2ω1 and
√

2ω2 are the frequencies of the two characteristic peaks in ZT(ω), and C
is the relative strength of the two peaks. The fit of MD results using equation (10) gives
C = 0.44, ω1 = 10.8 THz, and ω2 = 42.0 THz.

We get an expression for F s
T(Q, t), using equations (8)–(10):

F s
T(Q, t) = exp

{
−Q2v2

0

[
1 − C

ω2
1

(
1 − e−ω2

1 t2/2) +
C

ω2
2

(
1 − e−ω2

2 t2/2)]}
. (11)

It should be noted that equation (11) is the short time behaviour of the translational ISF;
it starts from unity at t = 0 and decays rapidly; and in the long time limit (longer than 1 ps),
F s

T(Q, t) decays to a plateau given by an incoherent Debye–Waller factor A(Q):

A(Q) = exp

{
−Q2v2

0

[
1 − C

ω2
1

+
C

ω2
2

]}
= exp

[−Q2a2/3
]

(12)

where a is the root-mean-square vibrational amplitude of the water molecules in the cage
in which the particle is constrained during its short time movements. Both MD and QENS
experiments gave the value a ≈ 0.5 Å in the supercooled region. a is fairly temperature
independent [21].

According to the MCT, the cage relaxation at long time can be described by theα-relaxation
model, with a stretched exponential time decay. This α-relaxation model is described by two
parameters, the structural relaxation time τT, which is Q dependent, and a stretch exponent β,
also slightly Q dependent. Therefore, the complete time dependence of the translational ISF
can be written as

FT(Q, t) = F s
T(Q, t) exp

[− (t/τT)
β
]
. (13)

Our previous work [23] has shown that τT has a power-law-like dependence on Q with a
pre-factor τ0 and a power-law exponent γ ,

τT = τ0(a Q)−γ . (14)
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Figure 4. Temperature dependence of the average translational relaxation times as extracted from
SPC/E water MD data. The inset shows the behaviour of the stretch exponent β and of βγ .

We call τ0 the average temperature-dependent translational relaxation time and γ the exponent
for the Q-dependence of τT. We therefore focus our discussions on τ0 and γ instead of τT.
MD results show that the exponent γ has a slight Q-dependence while approaching two in the
limit Q → 0 and remains constant at higher Q values. The stretch exponent, β, is slightly Q
dependent as well while approaching unity at high temperature and in the limit Q → 0. These
limits lead to the normal diffusion process at low Q values, FT(Q, t) ≈ exp[−DQ2t], where
D is the self-diffusion coefficient. Whereas our experiment is out of this low Q limit, both β
and γ may be considered Q independent [48, 49].

In figure 4 we show the temperature dependence of the average translational relaxation
time, 〈τ0〉 = (τ0/β)�(1/β), as obtained from MD simulations of SPC/E water. The ISFs
of the centre of mass at different temperatures, calculated from the MD trajectories, have
been fitted according to the RCM, using equations (11) and (13). We fit these results with
both the critical law and the Vogel–Fulcher–Tamman law. It is well known that the diffusion
coefficient of bulk water follows a critical behaviour [4]. In our case, at low temperature,
we cannot extract the diffusion coefficient from the average translational relaxation time,
〈τ0〉 = (τ0/β)�(1/β), because it is not Q2 dependent. The obtained data follow the critical
law: 〈τ0〉 ∼ (T/198.3 − 1)−3.22. This result is in accordance with the reported temperature
dependence of the self-diffusion coefficient for SPC/E water [22]: D ∼ (T/198.7 − 1)2.73.
Both D and 〈τ0〉 follow a critical law in temperature, with similar Tc. Since SPC/E water
temperature of maximum density is T = 250 K, there is a 27 K offset between the real and
computer temperature. Therefore, the critical temperature obtained by MD simulations in this
case corresponds to T ≈ 225 K in real water. In the meantime, the Vogel–Fulcher–Tamman
(VFT) law shows a good fit to MD generated 〈τ0〉 as well. The VFT law is a way to fit relaxation
times close to the glass transition point. According to the VFT law

τ = τ0eDT0/(T −T0) (15)

where τ0, D, and T0 are constants, and τ0 is a vibration time. T0 is an ideal glass transition
temperature. It is shown in figure 4 that T0 = 172.5 K, corresponding to 200 K in bulk water.
It is seen in the inset that β is slightly temperature dependent, starting from 0.9 at 284.5 K
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down to 0.8 at 215 K. βγ is the exponent determining the Q dependence of the relaxation
time, τT. It is seen that at high temperature, the exponent starts from two, signifying a free
diffusion, and decreases linearly to a value below two, signifying a restricted diffusion.

3.5. Theory for the rotational intermediate scattering function

As far as the rotational ISF is concerned, we start from an exact expansion generated by
Sears [54]. As we defined it earlier, �b(t) denotes a vector from the centre of mass to the
hydrogen atom. The rotational ISF could be then expressed by this vector, as the water
molecule rotates around the centre of mass,

FR(Q, t) ≡ 〈
e−i �Q·�b(0)ei �Q·�b(t)〉 = j 2

0 (Qb) +
∞∑
�=1

(2� + 1) j 2
� (Qb)C�(t) (16)

where j�(x) stands for the �th-order spherical Bessel function, C�(t) the �th-order rotational
correlation function, and b = 0.98 Åthe approximate length of the O–H bond in a water
molecule. For a typical Q range encountered in QENS experiments, generally Q < 2.5 Å−1,
this expansion is very useful. The advantage of using this expansion is that the Q dependence
of the rotational ISF is exactly given and one needs to make a model for a few lower-order
rotational correlation functions which are Q-independent quantities. In this case, the expansion
needs to be carried out to at most the � = 3 term. In this paper, we shall make a model explicitly
for the function C1(t) and shall generate the other higher-order rotational correlation functions
approximately using the maximum entropy method of Berne et al [55].

The �th-order rotational correlation function is defined as

C�(t) = 〈P�(cos θ(t))〉 (17)

where P� is the Lengendre polynomial of �th order and θ(t) is the angle between the vector
�b(0) and �b(t). To calculate the statistical average, we start by considering the short time
behaviour of C1(t). At a given instant, say t = 0, a typical hydrogen atom is hydrogen bonded
to its nearest neighbour oxygen atom. Then, the short time dynamics of the rotation of the
hydrogen, �b(t), around the centre of mass must be well described by a harmonic motion of the
angle θ(t), that is to say

θ̈ (t) + ω2θ(t) = 0. (18)

Then, the distribution function of θ(t) is Gaussian and it follows the Bloch theorem [56]:

〈eαθ 〉 = exp
[

1
2

〈
(αθ)2

〉]
. (19)

Knowing that

P1(cos θ(t)) = cos θ(t) = eiθ + e−iθ

2
, (20)

one can then derive the following results:

Cs
1(t) = 〈cos θ(t)〉 =

〈
eiθ + e−iθ

2

〉
= exp

[
−1

2

〈
θ2(t)

〉]
. (21)

Now, since the tip of the vector �b(t) is tracing a surface of a sphere of radius b centred
around the centre of mass, the arc that it traces at short time, ��b(t), can be considered as
a vector in a tangential plane, so one can approximately write θ2 = 1

b2 (�b2
x + �b2

y) =
(
∫ t

0 dt ′ ωx(t ′))2 + (
∫ t

0 dt ′ ωy(t ′))2, where �ω(t) = 1
b

d�b (t)
dt = d�θ

dt is the angular velocity of the
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Figure 5. The spectral density function of the normalized angular velocity autocorrelation function
ZR(ω) at T = 250 K. The open circles represent the results of the simulation and the solid curve
the resulting fit by the model using equation (26).

hydrogen atom around the centre of mass. Next, we use the identity〈(∫ t

0
dt ′ ωx(t

′)
)2

〉
=

〈∫ t

0
dt ′

∫ t

0
dt ′′ ωx(t

′)ωx(t
′′)

〉

= 2
∫ t

0
(t − τ )〈ωx(0)ωx(τ )〉 dτ. (22)

We finally arrive at a result [57],

Cs
1(t) = exp

[
−

∫ t

0
(t − τ )〈ωx (0)ωx(τ ) + ωy(0)ωy(τ )〉 dτ

]

= exp

[
− 2

3

∫ t

0
(t − τ )〈 �ω(0) · �ω(τ)〉 dτ

]
. (23)

Define the normalized angular velocity auto-correlation function as ψR(t) = 〈�ω(0) ·
�ω(t)〉/〈ω2〉, and its spectral density function as

ZR(ω) = 1

π

∫ ∞

−∞
eiωtψR(t) dt (24)

which is normalized to unity for ω from zero to infinity. Therefore, it is reasonable to make
the approximation for the short time part of the first-order rotational correlation function as
follows:

Cs
1(t) = exp

[
−4

3

〈
ω2

〉 ∫ ∞

0
dω ZR(ω)

1 − cos(ωt)

ω2

]
. (25)

We model the spectral density function by a simple Gaussian-like function (see figure 5):

ZR(ω) = 2ω6

15ω6
3

√
2πω2

3

exp

[
− ω2

2ω2
3

]
(26)

where
√

6ω3 denotes the peak position. The MD results show that this so-called hindered
rotation peak, located approximately at 70 meV, is fairly independent of temperature. By
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applying equation (26) to (25), the short time approximation of the first-order rotational
correlation function can be written as

Cs
1(t) = exp

{
−2

3
〈ω2〉

∫ ∞

0
dω ZR(ω)

1 − cos(ωt)

ω2

}

= exp

{
−4〈ω2〉

45ω2
3

[
3

(
1 − e

−ω2
3 t2

2

)
+ 6ω2

3t2e
−ω2

3 t2

2 − ω4
3t4e

−ω2
3 t2

2

]}
. (27)

This function describes the short time behaviour of the first order rotational correlation function.
It starts from unity at t = 0, exhibits an oscillation at time 0.05 ps, and then decays to a flat
plateau for times longer than 0.1 ps, determined by exp{−4〈ω2〉/15ω2

3}.
Analogous to the translational dynamics, the first-order rotational correlation function can

be separated into a short time harmonic libration in the cage and a long time relaxation of the
cage. Therefore, the first-order rotational correlation function can be written as the product of
a short time libration and a long time stretched exponential relaxation:

C1(t) = Cs
1(t) exp

[−(t/τR)
β
]

(28)

where τR is the rotational relaxation time and β is the stretch exponent, the same as in FT(Q, t),
and the reason will be described later.

The whole picture resembles the relaxing cage model of the translational dynamics. At
short time, the orientation of the central water molecule is fixed by the H bonds with its
neighbours. It performs nearly harmonic oscillations around the hydrogen-bond direction,
described by Cs

1(t). At longer times, the bonds break and the cage begins to relax, so that
the particle can reorient itself, losing memory of its initial orientation. Thus, the first-order
rotational correlation function eventually decays to zero by a stretched exponential relaxation.

We define a notation, µ(t) = cos θ(t). To calculate C2(t) and C3(t) from C1(t), we
need a probability distribution function, P(µ, t), and we need to know its functional form.
We shall guess the distribution function based on maximization of the informational entropy
subject to the condition that we know C1(t) [55]. This method is very effective at short times,
corresponding to the harmonic libration. According to the scheme, the distribution function is
given by

P(µ, t) = eα+βµ. (29)

Because
∫

d� P(µ, t) = 1,

eα = 1

2π

β

eβ − e−β , (30)

C1(t) =
∫

d� eα+βµµ = − [1/β(t)] + coth β(t). (31)

Then the higher-order correlation functions can be determined from C1(t) using
equations (29)–(31). The connection of C1(t) to the higher-order rotational correlation
functions is given in terms of β(t). The results are

C2(t) = 1 − [3/β(t)]C1(t), (32)

C3(t) = − 5

β(t)
+

[
1 +

15

β(t)

]
C1(t). (33)

3.6. The validity of the theory of the rotational correlation functions

To explain the validity of the theory of the rotational correlation function, we focus on the
validity of C1(t) as given by equations (25) and (28). Since the short time behaviour of the first-
order rotational correlation function, Cs

1(t), is essentially determined by the spectral density
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function of the normalized angular velocity autocorrelation function, ZR(ω) (equation (25)),
we show in figure 5 the MD data of ZR(ω) and its representation by the analytical function,

[2ω6/(15ω6
3

√
2πω2

3)] exp[−ω2/(2ω2
3)]. It is obvious that a broad band is peaked at ∼65 meV

for the MD data. In the Gaussian representation by equation (26), the peak position is at
√

6ω3.
We note that this analytical function is a fair representation of the spectral density function.

Next, we show that ZR(ω) is part of the spectral density function of the hydrogen atom.
Since we know that

�vH(t) = �vCM(t) + �vR(t) (34)

and

�vR(t) = b �ω(t), (35)

we get the relation

〈�vH(0) · �vH(t)〉 = 〈�vCM(0) · �vCM(t)〉 + b2 〈 �ω(0) · �ω(t)〉 (36)

in which we neglect the cross terms because they are very small compared with the others at
short time. Moreover, since

ZH(ω) = 1

π

∫ ∞

−∞
eiωt 〈�vH(0) · �vH(t)〉〈

v2
H

〉 dt, (37)

ZCM(ω) = 1

π

∫ ∞

−∞
eiωt 〈�vCM(0) · �vCM(t)〉〈

v2
CM

〉 dt (38)

one can safely write

ZH(ω) � αZCM(ω) + βZR(ω) (39)

where

α + β = 1.

In figure 6 we plot MD results for ZH(ω) and its decomposition into the sum of ZCM(ω)

and ZR(ω) for T = 225 K. From the inspection of the figure, it is obvious that the two
low frequency peaks of the hydrogen density of states are translational in character and
the prominent high frequency peak belongs to rotations. In the literature, the latter peak
is often called the hindered rotation peak, which is clearly associated with the oscillation of
the hydrogen atom perpendicular to its hydrogen bond.

After applying the theory for Cs
1(t) to C1(t) and deriving C2(t) and C3(t) through C1(t),

we are now ready to compute the rotational ISF using Sears expansion (equation (16)). Figure 7
shows the rotational ISF calculated by MD at three Q values and their computation by Sears
expansion using the MD generated C1(t), C2(t), and C3(t). For all three Q values, one sees
good agreements between the two, indicating that up to Q = 2.26 Å−1 our theoretical model
for the rotational correlation functions is valid and the Sears expansion can be safely truncated
at the fourth term.

To see the critical behaviour of rotational dynamics, we have analysed SPC/E water MD
simulation trajectories to obtain C1(t) and C2(t). Their long time relaxation has been fitted to
a stretched exponential function. Figure 8 shows the obtained results. The data obey a critical
law with T MD

c = 204 K, which is close to the critical temperature found for the translational
dynamics of SPC/E water. The data obey the VFT law as well with T0(〈τR1〉) = 160.4 K and
T0(〈τR2〉) = 170.5 K, which is near the value obtained from the average translational relaxation
times, T0 = 172.5 K, signalling an ideal glass transition at about 200 K (real temperature).

We show the β values for the fitting of C1(t) and C2(t), in figure 8 inset (b). At the same
time, the β values for the translational dynamics are shown denoted as β. Within the error
limit, they can be considered coincident, which confirms the validity of the assumption, in the
fitting algorithm, that βR = β.



Slow dynamics of supercooled water S5417

0 50 100 150 200

0

5x10-3

1x10-2

2x10-2

2x10-2 Z
H

0.077 Z
CM

0.923 Z
R

0.077 Z
CM

+ 0.923 Z
R

T=225 K

Z
( ω

)

ω (meV)
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where the latter quantity represents the spectral density function of the normalized centre of mass
velocity autocorrelation function. It is to be noted that the prominent peak at 65 meV, the so-called
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Figure 7. The rotational intermediate scattering function FR(Q, t) versus time at three Q values
and at T = 250 K. From top to bottom, Q = 0.75, 1.51, and 2.26 Å−1. The open circles represent
simulated FR(Q, t) at each Q value, the solid curves the results computed by Sears expansion
equation (16) up to the fourth-order term using simulated C1(t), C2(t), and C3(t).

3.7. The coupling of the translational and rotational dynamics

It has been clearly shown, using MD simulation, that translational and rotational dynamics
are strongly coupled [24]. In fact, the long time behaviour of the first, second, and third-
order rotational correlation functions, C1(t), C2(t), and C3(t), coincides with the long
time behaviour of the ISF of the centre of mass at three specific Q values, Q∗

1, Q∗
2, and

Q∗
3, independent of temperature [49, 58]. Even though the model uses the decoupling
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Figure 9. MD results for the temperature dependence of the parameter Q∗.

approximation, which neglects translational–rotational correlations, we impose the same
stretch exponent, β, for both the translational ISF and the first-order rotational correlation
function. Therefore, at a specific Q∗, the long time decay of FT(Q∗, t) and C1(t) coincide:
exp[−(t/τT(Q∗))β] = exp[−(t/τR)

β], where Q∗ is given by

Q∗ = 1

a

(
τ0

τR

)1/γ

. (40)

Figure 9 is the MD generated Q∗. It is between 1.0 and 1.2 at all temperatures, which could
be seen as temperature independent.
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Figure 10. Microscopic structures of MCM-41-S (pcb-159c) and MCM-48-S (pcb-072c).

4. Experiment

4.1. Preparation and characterization of the samples

We use two samples, MCM-41-S (pcb-159-c, with pore size 25 Å) and MCM-48-S (pcb-072-
c, with pore size 22 Å) to extract most of our results and compare with RCM predictions
and MD simulation results. Two other samples, MCM-41-S (mac-1219-7, with pore size
18 Å, and mac-0124-4, with pore size 14 Å) have also been tested and are shown in a
few figures. Figure 10 shows the schematic microstructures of MCM-41-S (pcb-159-c)
and MCM-48-S (pcb-072c). The former matrix (25 Å pore diameter) has 1D cylindrical
tubes arranged in a hexagonal structure whereas the latter (22 Å pore diameter) has a 3D
bicontinous morphology. We explain the preparation and characterization of these samples
in the following. To synthesize the MCM samples, zeolite seeds were prepared by mixing
NaAlO2 (Riedel-de Haen), NaOH (Shimakyu’s Pure Chemicals, Japan), fumed silica (Sigma),
tetraethyl ammonium hydroxide (TEAOH) aqueous solution (20%) (Acros), and water with
stirring for 2–5 h, then transferring the solution into an autoclave at 100 ◦C for 18 h. A
clear solution of nanoprecursors was obtained. MCM-48-S (pcb-072c) [59] was synthesized
by reacting zeolite seeds with cetyltrimethylammonium bromide solution (CTAB, Acros) at
150 ◦C for 6–24 h. Samples were then collected by filtration, washed with water, dried at
100 ◦C in an oven for 6 h, and calcined at 580 ◦C for 6 h. To obtain MCM-41-S (pcb-159c) [60]
the mixture of zeolite seeds and surfactant solution was hydrothermally treated at 150 ◦C for
2–6 h, creating a disordered mesostructure. After pH adjustment and hydrothermal reaction
at 100 ◦C for 2 days we obtained the desired hexagonal nanoporous material. The molar
ratios of the reactants NaAlO2:SiO2:NaOH:TEAOH:C16TMAB:H2O were 1:37–67:1.5–9:11–
22:18.3:3000–3500 for both cases.

The samples have been characterized using x-ray diffraction (XRD) (Scintag X1 diffrac-
tometer using Cu Kα, λ = 0.154 nm), transmission electron microscopy (TEM), thermogravi-
metric analysis (TGA) (NETZSCH TG-209), and differential scanning calorimetry (DSC)
(TA Instrument 5100 control system and LT-Modulate DSC 2920). N2 adsorption–desorption
isotherms have been measured as well (Micromeritics ASAP 2010 sorptometer at 77 K).

XRD spectra show that the MCM-48-S was well ordered with cubic (Ia3d) symmetry,
whereas the MCM-41-S had hexagonal (P6mm) symmetry, as shown in figure 11. Both
samples exhibit high hydrothermal stability. BET surface area, pore size, and pore volume
were determined using the nitrogen adsorption–desorption technique. The obtained values are
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Figure 11. XRD patterns of MCM-48-S (pcb-072c) and MCM-41-S (pcb-159c).

Table 2. Parameters characterizing the structural properties of the investigated samples.

Surface area (m2 g−1) Pore size (Å) Pore volume (cm3 g−1)

MCM-48-S 1312 22.0 0.97
MCM-41-S 1155 25.0 1.11

reported in table 2. The wall thickness of the MCM-48-S sample is about 10 Å, as calculated
using the Schumacher method [61].

To hydrate the nanoporous matrices, we put the calcined samples onto the diskette that
was full of water (H2O) vapour by pumping with saturated NaCl solution for 2–3 days. We
thus obtained water-loaded samples with hydration levels (grH2O/grsample) of ≈30% (MCM-
41-S) and ≈35% (MCM-48-S), as determined by thermogravimetricanalysis. Even though the
MCM-41-S sample has a larger pore volume, it has a lower hydration level. This discrepancy
is probably connected to the presence of void defects.

According to the Gibbs–Thomson equation, the melting point of a small crystal is inversely
proportional to the crystal size, which, in this case, is equal to the pore size of the material. The
melting/freezing behaviour of water in the samples has been checked by DSC measurements
(figure 12). Thus, the MCM-41-S sample (pore size 25 Å) has a higher melting point than the
MCM-48-S sample (pore size 22 Å). The estimated melting points are Tm = 229.5 and 232.4 K,
for water in the MCM-48-S and MCM-41-S matrices, respectively. Using a backscattering
spectrometer, we have also recorded a series of elastic scans. In figure 13 we report, as
an example, the elastic scan for the MCM-48-S (22 Å) and MCM-41-S (14 Å) hydrated
samples. We took down the fraction of neutrons elastically scattered by the samples, in the
temperature range from T = 150 to 300 K, with an energy resolution of 1 µeV. As we
decrease the temperature, the fraction of elastic scattering increases. In fact, the dynamics of
the samples slows down and more and more neutrons are detected at the elastic channel. For the
22 Å sample, at about T = 220 K a plateau is reached, whereas for the 14 Å sample a plateau
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Figure 12. Differential scanning calorimetry curves of water inside MCM-48-S (pore size 22 Å,
panel (a)) and MCM-41-S (pore size 25 Å, panel (b)) samples.

is reached at about T = 200 K, signalling that the dynamics freezes at these temperatures.
The values obtained using neutron scattering are in good agreement with the DSC results.

4.2. QENS experiments

In the QENS experiments, the hydrated powder of MCM-41-S and MCM-48-S was evenly
spread to form a rectangular slab sample 0.5 mm thick,such that multiple-scattering corrections
should not be necessary (transmission 95%).

We carried out the QENS measurements at the NIST Centre for Neutron Research,
using the Fermi chopper (FCS), the disc chopper (DCS), and the backscattering (HFBS)
spectrometers. For FCS and DCS the incident neutron wavelength was 6.0 Å and the Gaussian
energy resolution function had a full width at half maximum (FWHM) of ∼60 and ∼30 µeV
respectively. For HFBS we have chosen the low resolution configuration, corresponding to
a resolution function with FWHM of ∼1.0 µeV and an energy window of ±36 µeV. In all
cases, the rectangular sample cell was placed at 45◦ to the direction of the incident neutron
beam. The detectors facing the edge of the can have been discarded. The resulting range of
elastic wavevector Q was from 0.33 to 1.93 Å−1, from 0.27 to 1.93 Å−1, and from 0.25 to
1.60 Å−1, in the case of FCS, DCS, and HFBS respectively. These Q ranges are broad enough
to simultaneously monitor both translational and rotational dynamics of the water molecules.
The spectra were corrected for scattering from the same sample holder, standardized using
results from a run using vanadium and converted to the differential scattering cross section
using standard routines available at NIST.

5. Results and discussion

5.1. General fit

Figure 14 is an example of comparison of a recorded experimental spectrum with the fitted
result using the RCM model. The data, collected using FCS, refer to a sample of MCM-48-S
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Figure 13. The elastic scans of the MCM-48-S (pore size 22 Å) and MCM-41-S (pore size 14 Å)
samples.

at T = 300 K, at Q = 1.88 Å−1. It is seen that the agreement between the model and the
experimental data is satisfactory throughout the entire spectral range.

As shown in figure 14, a pronounced elastic component is superimposed on the quasielastic
broadening. The presence of this quasielastic component is clearly detectable at most
temperatures and Q, even with the broad resolution of FCS. The elastic contribution is mainly
due to the scattering of hydrogen atoms in surface silanol (Si–O–H) groups [28]. The dangling
O and H atoms of water molecules are connected to the surface Si atom to form a silanol
group. In this silanol group, the H atom is not fixed, but is constrained to move in a circle in
the surface to keep the O–H bond length and the Si–O–H angle constant. It is known that, for
the hydroxylated silica surface, surface solvent hydrogen bonding is stronger than interactions
in the bulk solvent, with the nearest solvent layer interacting specifically with up to three
surface hydroxyl groups. Therefore, the strong interactions between water molecules and the
silanol groups should be taken into account in our analysis as well.

As temperature decreases, water dynamics slows down very fast and it is increasingly
difficult for it to be resolved by the finite resolution of QENS spectrometers. Some of the water
molecules are so slow that they could be seen as immobile by the QENS spectrometers and
contributing to the elastic component, so that the elastic contribution increases as temperature
decreases. It has been also found that the dynamics of water in nanoporous materials at
supercooled temperature is better described by a distribution of relaxation times than a single
average relaxation time.
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Figure 14. A typical QENS spectra from the MCM-48-S hydrated sample at T = 300 K, at
Q = 1.88 Å−1. Data have been collected using FCS. Error-bars are not shown for the sake of
the clarity of the figure; the scatter of the data furnishes an idea of the error. The curves show the
different components of the data analysis: the continuous curve represents the result of the fit; the
dashed curve is the elastic component; the dotted, dash–dot, and dash–dot–dot curves represent
contributions to the scattering from the first three terms of the Sears expansion, respectively.

Defining the magnitude of the wavevector transfer Q corresponding to the scattering
angle θ at the elastic channel as Q0 = [4π sin(θ/2)]/λ, we can analyse the experimental data
according to the following equation:

S(Q, ω) = pR(Q0, ω) + (1 − p)FT {FH(Q, t)R(Q0, t)} (41)

where p is the area of the elastic component, FH(Q, t) is the ISF of hydrogen atoms, and
R(Q0, t) is the Fourier transform of the experimental resolution function, R(Q0, ω).

Taking the weight of the elastic component as a fitting parameter, we obtain temperature-
dependent values for p. However, in this way we were trying to evaluate contributions from
the hydrogen atoms of surface silanol groups, the water molecules interacting strongly with
surface silanol groups, and some of the very slow bulk water molecules. At temperature values
lower than 270 K, the area of the elastic component seems to increase, whereas for T � 270 K
a plateau is reached. The fast increase on lowering temperature is obviously connected to the
slowing down of water dynamics. In the meantime, the plateau value is then the scattering due
to the hydrogen atoms of surface silanol groups, without the contribution of bulk water and the
water molecules interacting strongly with surface silanol groups. The surface silanol groups
are so well organized and strong that they may be seen as temperature independent. We can find
as well that even if FCS and DCS results agree very well, a sudden jump occurs when the data
from HFBS are considered as well. This occurrence is due to the different resolution function,
more than one order of magnitude sharper than for DCS. In the ideal case, the area of the
elastic component would be resolution independent, if two clearly separated relaxation times
can be identified with one inside the experimental time window and the other corresponding
to virtually immobile particles. However, experimentally, we expect a continuous distribution
of relaxation times in supercooled water, encompassing the dynamics of water in the inner
part and on the surface of the pores. Therefore, the value of p is strongly dependent on the
time-window cut-off. For this reason, to obtain consistent results, we have fixed p to its
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Figure 15. The elastic component weight, p, for the four samples as measured using the three
QENS spectrometers: FCS, DCS, and HFBS.

plateau value, p = 0.12 and 0.08 in the case of MCM-48-S and MCM-41-S, respectively,
when analysing the data from different spectrometers (see figure 15). We argue that, without
introducing an arbitrary cut-off, it is impossible to identify a population of molecules whose
dynamics is much slower than the resolution of the instrument. More consistent results from
different instruments can then be obtained by assuming a single distribution of relaxation times
for the whole water population. It would be expected that p of MCM-48-S should be smaller
than that of MCM-41-S since the water content in the MCM-48-S sample is slightly higher than
in the MCM-41-S case. However, the fixed plateau value for MCM-48-S is slightly higher than
MCM-41-S, because the number of silanol groups is larger in the sample with larger surface
area (MCM-48-S).

The quasielastic broadening has been analysed according to the RCM as described in the
previous section.FH(Q, t) is described in terms of ten parameters (from equations (4), (5),
(11), (13), (16), (27), (28), (32), (33) and (41)): C , ω1, ω2, τ0, γ , β, ω3, τR, 〈ω2〉, and p. Five
of them are related to the short time dynamics, namely C , ω1, ω2, ω3, and 〈ω2〉. The short
time dynamics is not strongly temperature dependent, according to MD simulation results. On
the other hand, the quasielastic broadening is mostly determined by the long time dynamics.
For this reason, we have fixed the values of C , ω1, ω2, and ω3 according to the results of our
MD simulations. This procedure is reliable. In fact, MD simulation results on the short time
dynamics can be compared with the experimental results from inelastic neutron scattering,
and the agreement is very satisfactory [23, 24]. 〈ω2〉 has been fixed according to the equation
〈ω2〉 = kBT/I , through an estimation of the momentum of inertia of the water molecules. This
value is in agreement with the results of MD simulations [24] and of the combined analysis of
QENS and INS spectra [50].

The remaining parameters,namely p, τ0, γ , τR, and β, can be determined from the analysis
of the QENS spectra. However, in the remainder of the paper, we report the results of our
analysis with the value of p fixed to its plateau value. Therefore, since the fitting parameters
are Q independent, we fit the experimental S(Q, ω) surface (both ω and Q dependence) using
just four fitting parameters. We took into account the first three terms of the Sears expansion.
We actually fitted constant angle spectra, taking into account the dependence of Q on the
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Figure 16. Comparison of the typical QENS spectra of the MCM-48-S sample from the three
different spectrometers, at three different temperatures. The continuous, dash, dot, dash–dot, and
dash–dot–dot curves represent the total fit, the elastic component and the contributions from the
first three terms of the Sears expansion, respectively.

energy transfer, E :

Q =
√

2mn

[
2Ei − E − 2 cos θ

√
Ei (Ei − E)

]
(42)

where mn is the mass of the neutron and Ei is the energy of the incident neutrons.
In figure 16, we show as an example three spectra collected using FCS, DCS, and HFBS.

From the figure, the progressive sharpening of the quasielastic broadening as temperature is
lowered can be noticed. The 1 µeV resolution of HFBS is necessary to obtain useful data at
T � 250 K, even if the resulting energy window is quite small. As the broadening is strongly
temperature dependent, the data have been fitted in different energy windows for the three
spectrometers. FCS and DCS data have been analysed in the ranges −5 meV � E � 0.8 meV
and −2 meV � E � 0.9 meV, respectively. Such big ranges are necessary to the analysis of
the rotational components, whose wings are very large at the high Q values. In any spectra, no
appreciable background has been noticed. The HFBS energy window is from −30 to 30 µeV.
In this small interval, the Q value can be considered equal to the zero-energy-transfer value,
Q0, in the whole range.
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Figure 17. Typical QENS spectra from DCS of the MCM-41-S (25 Å) and MCM-48-S (22 Å)
sample at T = 260 K, at three different Q values, 0.63, 1.41, and 1.93 Å−1. The errors are no
larger than the symbols. The continuous curve represents the result of the fit; the dashed curve is
the elastic component; the dotted, dash–dot, and dash–dot–dot curves represent contributions to
the scattering from the first three terms of the Sears expansion, respectively.

Figures 17 and 18 show the Q dependence of the spectra for MCM-48-S (22 Å) and
MCM-41-S (25 Å) using the three spectrometers. The scatter of the data furnishes an idea of
the error. The fitting results are shown as well, as continuous lines. In figures 14 and 16–18,
the first three terms of the Sears expansion, used in the analysis procedure, are reported as dot,
dash–dot, and dash–dot–dot curves. As can be seen, the fit is very good in all investigated
cases. It is remarkable that using four parameters we were able to reproduce the data from 11
(FCS), 9 (DCS), and 7 (HFBS) constant angle spectra.

As mentioned in the previous section in all cases, we have analysed, at the same time,
a low angle reflection geometry and a high angle transmission geometry group of spectra.
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Figure 18. Typical QENS spectra from HFBS of the MCM-48-S sample at T = 245 K, at three
different Q values, 0.47, 1.42, and 1.60 Å−1. The scatter of the data furnishes an idea of the error.
The continuous curve represents the result of the fit; the dashed curve is the elastic component; the
dotted, dash–dot, and dash–dot–dot curves represent contributions to the scattering from the first
three terms of the Sears expansion, respectively.

Although the lowest angle spectra are somewhat resolution limited, from the first group, the
translational dynamics can be obtained. As Q increases, the spectra broaden, both because
of the Q dependence of the translational dynamics and because of the increasing contribution
from the rotational dynamics at Q � 1 Å−1. Therefore, the high Q spectra are determined by
the translational and rotational dynamics. The simultaneous fitting of the spectra at different
angles allows the separation of the different contributions.

In tables 3–5 we report the extracted fitting parameters for the FCS, DCS, and HFBS
data respectively. In the tables the χ2 of the total fit is reported as well. As can be seen
it increases with decreasing temperature, possibly because, as the dynamics slows down, the
finite resolution of the instrument does not allow a perfect fit. It can also be seen that, in general,
DCS data allow a better fit, of constant quality in the investigated temperature range. FCS
data fitting is quite satisfactory as well; however, its quality decreases at low temperature. In
the HFBS case, relatively high χ2 values are obtained; for this reason the obtained parameters
have to be taken with some scrutiny. However, it is very satisfactory that the results obtained
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Table 3. Numerical values of the extracted fitting parameters from the analysis of the FCS data.

MCM-41-S (25 Å)

T (K) τ0 (ps) τR (ps) β γ χ2

310 1.25 ± 0.57 94.1 ± 6.4 0.658 ± 0.007 2.61 ± 0.34 0.39
300 2.12 ± 0.10 99.6 ± 0.3 0.854 ± 0.01 2.04 ± 0.01 0.56
290 2.47 ± 0.85 138.6 ± 20.0 0.761 ± 0.065 2.13 ± 0.27 0.62
280 2.86 ± 0.65 339.2 ± 83.9 0.701 ± 0.001 2.2 ± 0.13 1.14
270 3.82 ± 4.54 341.6 ± 2.2 0.624 ± 0.001 2.17 ± 1.67 2.24
260 6.44 ± 3.28 342.1 ± 1.0 0.695 ± 0.150 2.11 ± 0.68 4.54
250 8.83 ± 4.80 697.1 ± 0.7 0.503 ± 0.152 2.31 ± 0.76 12.73

MCM-48-S (22 Å)

310 0.86 ± 0.56 149.4 ± 0.1 0.543 ± 0.074 3.00 ± 0.48 1.20
300 2.10 ± 0.62 63.0 ± 0.7 0.876 ± 0.038 2.07 ± 0.23 0.99
290 2.80 ± 0.10 49.7 ± 0.1 0.737 ± 0.069 2.13 ± 0.01 1.05
280 3.10 ± 0.01 600.9 ± 54.1 0.672 ± 0.003 2.20 ± 0.02 1.15
270 4.71 ± 1.20 629.3 ± 1.1 0.585 ± 0.069 2.18 ± 0.30 2.92

Table 4. Numerical values of the extracted fitting parameters from the analysis of the DCS data.

MCM-41-S (25 Å)

T (K) τ0 (ps) τR (ps) β γ χ2

280 4.52 ± 1.68 110.4 ± 27.4 0.590 ± 0.050 2.26 ± 0.27 0.85
270 6.56 ± 0.41 336.7 ± 1.7 0.550 ± 0.001 2.29 ± 0.08 0.96
260 11.50 ± 3.85 511.0 ± 2.7 0.530 ± 0.001 2.26 ± 0.27 1.19
250 19.85 ± 7.56 3704.8 ± 487.7 0.518 ± 0.005 2.22 ± 0.30 1.07

MCM-48-S (22 Å)

280 4.20 ± 1.39 531.1 ± 0.1 0.522 ± 0.003 2.48 ± 2.47 1.42
270 11.17 ± 4.31 138.3 ± 0.2 0.503 ± 0.002 2.24 ± 0.29 1.72
260 34.73 ± 14.71 146.1 ± 2.1 0.526 ± 0.001 1.89 ± 0.33 3.17
250 105.68 ± 56.40 407.3 ± 0.7 0.434 ± 0.001 2.10 ± 0.70 4.63

Table 5. Numerical values of the extracted fitting parameters from the analysis of the HFBS data.

MCM-48-S (22 Å)

T (K) τ0 (ps) τR (ps) β γ χ2

245 425.8 ± 29.6 5 355 ± 5 0.4 ± 0.005 1.00 ± 0.10 11.58
240 486.1 ± 4.5 48 360 ± 5 0.4 ± 0.010 0.98 ± 0.12 11.19
235 843.3 ± 59.0 166 100 ± 17 0.4 ± 0.027 0.77 ± 0.17 9.52
230 1745.4 ± 5.4 23 319 ± 2 0.4 ± 0.037 0.44 ± 0.30 8.69
225 2551.1 ± 177.7 2.10E6 ± 10 0.4 ± 0.05 0.25 ± 0.30 8.21
220 3536.3 ± 7.0 4.88E6 ± 48 0.4 ± 0.05 0.07 ± 0.23 8.94

using very different spectrometers agree very nicely. It is remarkable that the same model is
able to describe the dynamics of the system over a range of 100 K.



Slow dynamics of supercooled water S5429

0.4

0.8

220 230 240 250 260 270 280 290 300 310
0

1

2

3

a)

β

b)

MCM-48-S FCS
MCM-48-S DCS
MCM-48-S HFBS
MCM-41-S FCS
MCM-41-S DCS

βγ

T (K)

Figure 19. Temperature dependence of stretch exponent, β, and of the translational relaxation time
Q-dependence power law exponent, γ . In panel (b) the product βγ is reported. In panel (b) the
asterisks are the results when beta is fixed to the value 0.4 in the analysis of HFBS data.

5.2. β, γ, and βγ

The fitting of the data allowed us to extract the parameters describing the translational and
rotational dynamics of water. Thus, we have been able to study the effects of confinement and
temperature on hydration water in MCM nanoporous sieves.

Figure 19 reports the temperature dependence of the parameters β and βγ obtained from
the fitting procedure. In the previous analysis without fixing the value of p, we obtained values
of β increasing with decreasing temperature. We had suggested that this occurrence was most
probably due to a finite resolution effect. In fact, fixing p to the value corresponding to the
scattering of the surface silanol groups, β decreases with the lowering of temperature. This
behaviour is in agreement with the results obtained by MD simulations and is more sound
with the idea that upon supercooling the diffusive dynamics of a water molecule involves the
cooperative rearrangement of the surrounding particles. This occurrence causes the non-
exponentiality of the decaying function. As a matter of fact, when water is confined in
nanoporous materials the translational long time relaxation is already a stretched exponential
at room temperature. HFBS data, in the temperature range 245–220 K, are consistent with a
low value (0.4) of β.
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It is well known that a Fickian diffusive process has a Q2 dependence. In hydration and
supercooled water, since the diffusive process is somewhat obstructed, the average translational
relaxation time follows a power law in Q, with a power exponent �2. In our previous analysis
we actually found that at room temperature γ is ≈2, indicating a normal diffusive behaviour,
and that it progressively decreases with the lowering of temperature.

Recently, a series of papers has investigated in detail the Gaussianity of the relaxation
dynamics in polymers [62–64]. Very interesting results have been reported. In particular,
many similarities between the behaviour of polymers and of supercooled liquids, water in
particular, have been found. It has been reported that the product βγ is two at high Q and
decreases above a critical Q value, Qc. This indicates the transition from a Gaussian to a
non-Gaussian behaviour. In fact, βγ is the power dependence of Q in the ISF of the centre
of mass. If βγ = 2, the van Hove self-correlation function of the centre of mass, GCM

s (r, t),
which is the Fourier transform of FT(Q, t), is a Gaussian function. In water, the van Hove self-
correlation function of the centre of mass has been investigated by MD simulations [22, 65].
Through the investigation of the non-Gaussian parameter, α2, it has been shown that GCM

s (r, t)
is non-Gaussian at long times at supercooled temperatures.

We report the experimentally obtained values of βγ in figure 19 panel (b). βγ is slightly
less than two and decreases with temperature in such a way that it is almost a linear function
of T . It is very interesting that it seems to approach the Gaussian, diffusive value of two at
high temperature. From the data it can be argued that water dynamics is Gaussian at ambient
temperature and that it increasingly deviates from the Gaussian behaviour as temperature is
lowered. It is noteworthy that the values of βγ from all three spectrometers agree very well
with each other. Even if, as far as β and γ are concerned, no difference can be noticed between
MCM-41-S (25 Å) and MCM-48-S (22 Å), it can be argued that the obtained βγ values are
slightly higher in MCM-41-S (25 Å). This finding could be related to the fact that the pores
of this matrix are slightly bigger. It is worth noting that in MCM-48-S (22 Å) βγ seems to
approach zero at T = 220 K, indicating the complete arrest of the diffusional motion at this
temperature. We should qualify this statement, allowing for finite resolution of the instrument.
When the relaxation time approaches the limit of ≈1 ns, the dynamics is frozen on the timescale
of the backscattering instrument.

5.3. 〈τ0〉, 〈τR1〉 and 〈τR2 〉
In figures 20–22, we show the temperature dependence of the average translational relaxation
time, 〈τ0〉 = (τ0/β)�(1/β), as obtained from the experimental data. In the case of MCM-41-S
(25 Å) and MCM-48-S (22 Å), no clear critical slowing down can be seen in our experimental
data (220 K � T � 310 K), nor could an obvious fit be furnished with the Vogel–Fulcher–
Tamman law. However, an Arrhenius law 〈τ0〉 ∼ exp(EA/RT ), where EA = 11.3 and
7.73 kcal K−1 mol−1 in the case of MCM-48-S and MCM-41-S respectively, furnishes the
best fit to the data. Even if these findings cannot be considered conclusive, two possible
scenarios seem to apply: inside small nanoporous materials the dynamics of water is affected
in such a way that either the critical temperature is shifted to a lower temperature or no critical
behaviour is effective. MD simulations of SPC/E water confined in a 40 Å diameter Vycor
tube have found a lowering of the critical temperature of about 30 K with respect to the findings
on bulk SPC/E water [27]. Therefore, MD simulations support the first hypothesis. In order to
clarify this very important issue, we collected data on water confined in MCM-41-S matrices
with 18 Å (mac-1219-7) and 14 Å (mac-0214-4). Using these samples, we can distinguish a
quasielastic broadening down to 200 K, indicating that we can investigate supercooled states
of water at temperatures lower than those accessible with the previous samples. We report here
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Figure 20. Temperature dependence of the average translational relaxation time as extracted from
the analysis of the data taken using the three QENS spectrometers FCS, DCS, and HFBS. Panels (a)
and (b) show the results for the MCM-48-S (22 Å) and MCM-41-S (25 Å) matrices, respectively.
The open and solid points stand for the experimental data. Continuous lines are fit to the data
according to Arrhenius law, 〈τ0〉 ∼ exp(EA/RT ), where EA = 11.3 and 7.73 kcal K−1 mol−1 in
the case of MCM-48-S and MCM-41-S, respectively.

some preliminary results (〈τ0〉 versus T , figure 21) because we regard them as very interesting
for the scientific community. We eliminated the solid points in figure 21 and redrew the figure
in figure 22 with a 〈τ0〉 versus 1/(T − T0) scale. As shown in figures 21 and 22, we find that
in the range 325–225 K a VFT law with T0 = 200.5 K (mac-0124-4, 14 Å) and 206.2 K (mac-
1219-7, 18 Å) can describe the experimental data very well. These results suggest an ideal
glass transition temperature, T0 ≈ 200 K, which is in accordance with the temperature from
MD (T0 ≈ 170 K) since MD simulation data show an about 27 K lower value than real data. In
figure 21, it is noteworthy that at T > 220 K 〈τ0〉 follows the VFT law, whereas for T � 220 K
〈τ0〉 diverges from the VFT law, indicating the existence of a glass transition (structural arrest
transition) at T = 220 K. It is also very noteworthy that, in the whole temperature range, as
temperature decreases 〈τ0〉 increases by about five orders of magnitude, indicating a dramatic
slowing down of translational dynamics of water in MCM-41-S.

In order to study the effect of the confinement on water dynamics,we compare the obtained
translational relaxation times with the data reported for bulk water. At T = 300 K, β is
only slightly less than unity, γ ≈ 2, and βγ ≈ 2; therefore, we can calculate, with a good
approximation, the diffusion coefficient as D = a2/τ0. In bulk water, from NMR [66], it
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Figure 21. Temperature dependence of the average translational relaxation time as extracted from
the analysis of the data taken using the two spectrometers DCS and HFBS. Panels (a) and (b) show
the results for the MCM-41-S (mac-0124-4) and MCM-41-S (mac-1219-7) matrices, respectively.
Continuous curves are fits to the data according to the Vogel–Fulcher–Tamman law. Solid points
have not been considered for the fit.

has been found that D = 2.41 × 10−5 cm2 s−1; we find D = 1.11 × 10−5 cm2 s−1 and
D = 1.08 × 10−5 cm2 s−1 in the MCM-48-S (22 Å) and MCM-41-S (25 Å) matrices,
respectively. Then, the effective slowing down of the translational dynamics is about 2.2-
fold. At T = 280 K, in bulk water, from NMR, D = 1.39 × 10−5 cm2 s−1. Although the
derivation of the diffusion coefficient is not exact since βγ is not equal to two, at T = 280 K
we obtain D = 0.32 × 10−5 cm2 s−1 and D = 0.36 × 10−5 cm2 s−1 in the MCM-48-S and
MCM-41-S matrices, respectively, as obtained from the DCS data. At lower temperatures the
effective slowing down increases to a factor ≈4. We note that the fixing of the parameter p
slightly affects the obtained values for 〈τ0〉, as can be seen comparing these results with those
previously published [49].

The effect of the pore size can be studied by comparing our data with the results of a
previous work on water confined in a Vycor glass with average pore diameter of 50 Å, in which
the data have been analysed using the translational RCM [31]. We simply compare the average
translational relaxation times at Q = 0.46 Å−1; at this low Q value rotational contributions are
negligible. In Vycor 〈τT〉(Q = 0.46 Å−1) = 46.90, 82.43, 109.49, and 158.41 ps, at T = 293,
278, 268, and 258 K respectively. In MCM-41-S (25 Å) we find 〈τT〉(Q = 0.46 Å−1) = 66.5,
192.6, 323.3, and 575.4 ps; in MCM-48-S we find 〈τT〉(Q = 0.46 Å−1) = 77.4, 297.9,
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Figure 22. The plot of the average translational relaxation time. Panels (a) and (b) show the results
for the MCM-41-S (mac-0124-4) and MCM-41-S (mac-1219-7) matrices, respectively. Continuous
lines are fits to the data according to the Vogel–Fulcher–Tamman law.

594.4, and 1021.6 ps at T = 290, 280, 270, and 260 K, respectively, as obtained from FCS
(T = 290 K) and DCS data. Therefore, in these MCM matrices, whose pore diameters are half
of that of Vycor glass, the translational dynamic of water is, depending on temperature and
on the confining matrix, from ∼1.5 to ∼6.5 times slower than that of water in Vycor. These
findings show that the translational dynamics of water is strongly slowed down in pores with
such small dimensions.

As far as the rotational dynamics is concerned, the average relaxation time of the first-,
〈τR1〉, and second-, 〈τR2 〉,-order rotational correlation functions can be measured using
dielectric relaxation spectroscopy and NMR respectively [67]. In particular, it has been
reported that 〈τR2〉 follows a critical behaviour with a critical temperature very close to Tc.
Figure 8 shows that the MD generated data obey a critical law with T MD

c = 204 K.
In figure 8 inset (b), we show the β values for the fitting of C1(t) and C2(t) as open squares

and triangles, respectively. In the same panel, we report as dots the values for the translational
dynamics. Within the error limit they agree, confirming the validity of the assumption, in the
fitting algorithm, that β ≈ βR1.

Figure 23 shows the average rotational relaxation time, 〈τR〉 = (τR/β)�(1/β), as obtained
from the experimental results. In the temperature range 220 K < T < 310 K, the average
rotational relaxation time increases five orders of magnitude, showing a dramatic slowing down
of the rotational dynamics. However, we could not succeed in fitting the data to a critical law
or VFT law. These results are strongly affected by finite resolution effects.
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Figure 23. Temperature dependence of the average rotational relaxation time as extracted from the
analysis of the data taken using the three QENS spectrometers FCS, DCS, and HFBS. Solid and
open scatter show the results for the MCM-48-S (22 Å) and MCM-41-S (25 Å) matrix respectively.

Figure 23 compares the average rotational relaxation times for the two matrices. The size
and morphology of the pores do not seem to affect the rotational dynamics, as the obtained data
can hardly be considered different for the two samples. In fact, the rotation process of a water
molecule takes place within a sphere of radius b from the centre of mass, and is not directly
affected by confinement within pores larger than 20 Å. However, it is reasonable to presume
that confinement affects the rotational dynamics through translational–rotational coupling. In
this case the pore dimensions are quite similar and 〈τR〉 values in the two matrices tend to
coincide.

6. Conclusion

Within the decoupling approximation (which is accurate to �0.09), the relaxing cage model
for the ISF of hydrogen atoms in water can be used to fit both MD and QENS data for deeply
supercooled water successfully. We have also compared the behaviour of water inside two
matrices with different morphologies. The small dimensions of the pores (≈20 Å) allowed
us to investigate the temperature region below the homogeneous nucleation temperature
(TH = 235 K), obtaining information on the dynamics of water at temperatures rarely
investigated experimentally. Furthermore, the dynamics of water confined in nanoporous
silica materials has been shown to be similar to that of a supercooled bulk water.

Using three different QENS spectrometers, water in MCM-41-S with pore sizes 25 Å,
18 Å, and 14 Å and MCM-48-S with a pore size 22 Å has been studied in a wide range, from
room temperature to the deeply supercooled state. By fitting QENS data with the RCM, one can
extract both the Q-dependent average translational relaxation time τT(Q) and Q-independent
average rotational relaxation times τR1 and τR2 as a function of temperature. The Q dependence
of the average translational relaxation time follows a power-law τT(Q) = τ0(a Q)−γ ,
〈τ0〉 = (τ0/β)�(1/β). The area of the elastic component p, mainly contributed from the
hydrogen atoms in the surface silanol groups, is fixed to its plateau value for each sample.
At room temperature the exponents β ≈ 1 and γ ≈ 2 and both exponents decrease with
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temperature in such a way that β decreases to a plateau value of 0.4 and βγ is a linear function
of T . The results of the most recent studies show that 〈τ0〉 follows the Vogel–Fulcher–Tamman
law with an ideal glass transition temperature T0 ≈ 200 K for MCM-41-S with 14 Å and
18 Å pores. This temperature is about the same as the ideal glass transition temperature for
bulk water from MD simulation. The average rotational relaxation time does not follow the
VFT law but it increases by five orders of magnitude within this temperature range.

Inside the investigated MCM-41-S and MCM-48-S matrices the translational and
rotational dynamics of water are substantially slowed down with respect to bulk water.
Meanwhile, the effect is enhanced as temperature decreases. An exponential increase of
the average relaxation times of translational and rotational dynamics is detected on lowering
temperature. Both the average translational and rotational relaxation times slow down
tremendously as the confined water is supercooled and the dimensionality of the diffusion
process decreases in a way that strongly indicates the existence of a glass transition (structural
arrest transition) temperature at 220 K.

The comparison of the two matrices (MCM-41-S with pore size 25 Å and MCM-48-S
with pore size 22 Å) suggests that the rotational dynamics is not strongly influenced by the
morphology of the pores. On the other hand, it is not clear whether the different translational
dynamics of water in MCM-41-S and MCM-48-S should be attributed to the morphology of
the pore or to their slightly different dimensions.
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